Spectral properties of Luther-Emery systems
نویسنده
چکیده
We calculate the spectral function of the Luther-Emery model which describes one-dimensional fermions with gapless charge and gapped spin degrees of freedom. We find a true singularity with interaction dependent exponents on the gapped spin dispersion and a finite maximum depending on the magnitude of the spin gap, on a shifted charge dispersion. We apply these results to photoemission experiments on charge density wave systems and discuss the spectral properties of a one-dimensional Mott insulator. PACS numbers: 71.27.+a, 71.30.+h, 71.45.Lr, 79.60.-i Typeset using REVTEX
منابع مشابه
Dynamical correlation functions of one - dimensional superconductors and Peierls and Mott insulators ∗
I construct the spectral function of the Luther-Emery model which describes one-dimensional fermions with one gapless and one gapped degree of freedom, i.e. superconductors and Peierls and Mott insulators, by using symmetries, relations to other models, and known limits. Depending on the relative magnitudes of the charge and spin velocities, and on whether a charge or a spin gap is present, I f...
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
Spin - gap phase in the extended t − J chain
We study the one-dimensional deformed t−t−J model in terms of the continuum field theories. We found that at low doping concentration and far away from the phase separation regime, there are two phases: the Luttinger liquid and the Luther-Emery liquid, depending on t/t < (t′/t)c or t /t > (t′/t)c, where (t′/t)c > 0. Moreover, the singlet superconducting correlations are dominant in the Luther-E...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملSpectral gap estimates for interacting particle systems via a Bakry & Emery – type approach
We develop a general technique, based on the Bakry–Emery approach, to estimate spectral gaps of a class of Markov operator. We apply this technique to various interacting particle systems. In particular, we give a simple and short proof of the diffusive scaling of the spectral gap of the Kawasaki model at high temperature. Similar results are derived for Kawasaki-type dynamics in the lattice wi...
متن کامل